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MULTIGRADIENT DIELECTROPHORESIS: THEORETICAL ASPECTS

Allen L. Shalom and Israel J. Lin
Mineral Engineering Department
Technion - Israel Institute of Technology
Haifa 32000, Israel

I. INTRODUCTION

Dielectrophoresis is a long-established process used in various
areas of modern technology for separation of particles according to
dielectric properties. These include biologicall’2 and petro-
chemical3 as well as mineral processing4 applications; a comprehens-
ive review of the diverse possibilities of use is given by Lin and
BenguiguiS. The particles may be in any state (solid, liquid, gase-
ous) while the liquid may be a liquid or a gas, separation being
possible only when the components display different polarization
properties. There are three main ways of segregating particulates:
deflection4, trapping5 and 1evitation6. The process may consist in
501id/SOlid4'7, liquid/liquida, solid/liquid5 or gas/liquid9
separation, and in biological applications may even differentiate
between living and dead cellslo. The desired split is obtained by
judicious exploitation of geometric (particle size and shape),
physical (permittivity, conductivity, density) and operational
(flow rate, field intensity and frequency, temperature) parameters.
Two main dielectrophoretic techniques are currently in use: open-
gradientz'4 and multigradient3'5. The latter is a new development

initiated by the Gulf Co.3 whereby glass beads are used to produce

high gradients responsible for trapping of particulates and is

Copyright © 1987 by Marcel Dekker, Inc.
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obviously most advantageous, since it allows high throughputs at

relatively low capital and operational costs. However, this break-

through has not been followed by a successful commercialization due

to three main pitfalls:

1) The Gulf device is a batch system (limited capacity).

2) The matrix consists of glass beads (cleaning problems, low
permittivity).

3) The péwer supply is only d.c. (no flexibility in dealing with
conductive liquids).

Put in other words, this system is unable to deal properly with

suspensions over a few percent solids, ineffective in trapping

particulates in slightly conductive liquids, and inadequate for S-S

separation.

In this context, the research group at the Technion investigated
aspects likely to yield satisfactory answers to the problem listed
above, as well as additional ideas:

1) Sophisticated matrices with a view to better yields, e.gq. Ba’I‘iO3
beads (high permittivity) and mixtures of metallic rods or
beads with glass beads (high conductivity).

2) Grid electrodes serving simultaneously as matrix.

3) A two-dimensional interdigitized electrode system for qualitative
analysis of liquids.

4) Sinusoidal a.c. or pulsed d.c. fields, permitting processing of
conductive liquids.

5) A continuous carrousel device combining very high capacity and
relatively small dimensions.

6) Stable dielectric suspensions of submicronic particulates (BaTiOj)

providing a high-permittivity medium for S-S fractionation.

The present paper offers an overview of the various theoretical
aspects of matrix dielectrophoresis, with special emphasis on rod-
type matrices, which have proved to be better suited to industrial

operation, being easier to clean and permitting higher loadings.
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II. DIELECTROPHORETIC FORCE

The simplest and most attractive approach is the one put forward
by Pohll, Jonesll and more recently by Benguigui and Linlz, whereby
the dielectrophoretic force is obtained by summing the forces on two
equal and opposite electric charges (* g) located at a vector distance
d apart in a non-uniform electric field as shown in Fig. 1, the

net force on this small dipole being:
F=q T+ -gF D (1)
o [o)
Using a form of Taylor's series:

EO( + 3 - Eo(?) = (3-3)%0 + higher-order terms, (2)

&>
r

e I3
retaining only the first term since d - 0, and interpreting the

> >
product q+d as an electric dipole moment p - we have:

F = (;.$)Eo (3)

Figure 1 - Simple finite dipole model
used to calculate dielectro-
phoretic forcell
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This equation is valid in practical applications, provided:

1) The particle is small compared to the scale of non-uniformities
of the imposed electric field.

2) The macroscopic field remains unaffected, implying high dilution
(large distances between individual particles).

3) Higher-order moments are negligible, which is necessarily true if

>
d » 0.

> >
The operator (p:V) can be put in a more familiar form using a

vector transformation:

F= (pW)E = V(pE E Nppx (VKB ) - B x(V«p)  (4)
= . = . - . - X - X #
F= (pV)E (p*E ) - (E*V)p-p o o p

-> >
Then, setting p = anv where o 1is the polarizability tensor and

v the particle volume, we obtain:

F=oav[VE2 - (B -DE -28 x (VxB)) (5)
o o o o e}
where
> > > -2} > > > > > >
(E *V)JE = VEZ - (E *V)E - 2E x (VXE )
o o o o o o fe)
thus g2
> > > fo) > > >
(E *V)JE = — - E x (VXE ) (6)
[o} o 2 o o

By Egs. (5), (6), the final equation for the force is:
vE2

> o o > o
F = qvl - - Eo x (V XEO)] (N

The force F is thus sScen to consist of two components *

Vg2
g Eo 8
F) =av 5 (8)
F— Ex('v’x}f)
, = "aVE o (9)

> >
where Fl is the dielectrophoretic force, while F, is a levitation

force which is a function of the associated magnetic field produced

>
by the alternat$ng electric field. F2 is a force not null in a.c.

. T . .
since VXE = —%% and it can be shown to be proportional to a
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term € Egw where €, is the absolute permittivity of free space,

€ the fluid relative permittivity and o the angular frequency.

£
This term is zero for quasistatic fields and it becomes significant
only for frequencies in the gigahertz range. However, dielectro-
phoresis in liquids is done at frequencies varying up to the mega-

hertz level, thus ?2 can be readily neglected.

III. DETERMINATION OF POLARIZATION FOR A SPHERICAL PARTICLE IN A
FLUID (QUASISTATIC FIELDS)
Laplace's equation in the spherical case yields the following
solution for the potential outside and inside the spherel3 (see

Fig. 2):

¢, = /jL + Br)cose (10a)
£\ 2
C
¢ = (—— + Dr)cose (10b)
o 2
x
r
op.€p e
X
b
U’f "f
Eo
—_—

Figure 2 ~ Spherical partjcle in uniform
applied field EJ
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the subscripts £, p denoting the fluid and particle respectively.
With four coefficients to determine, four boundary conditions are
needed. At the surface of the sphere (r = b, b being the sphere

radius), we have:

o = ¢p = Epg = Epe (11)
do
OfEfr - OpEPr = - at— (12a)
o =¢ (e E_ -¢€ ) (12b)

s o f fr pEpr

where Gf and Op are respectively the fluid and particle conduct-
ivities, 9 the superficial charge density at the fluid/particle
interface, and Ep the relative permittivity of the particle.
Equations (12a), (12b) express the continuity of the total
current (conduction and displacement) and result in:
dE

dE
fr _ pr
ofEfr t e gr = UpEpr + soep 3t (12c)

This equation has been used by Pohlz, Jonesll as well as Benguigui
and Lin12 under various forms.

Two additional boundary conditions are that at large distances from
the sphere the applied field remains undisturbed and at the center

of the sphere the potential must stay finite:

¢fm = - Eor cosf = B = -Eo (13a)

¢, finite = C =0 (13b)

Using Eq. (13), the potential becomes:

A

¢ = (—E-— Eor)cose (14)
x

¢p = Dr cos8 (15)

Combining Egs. (11), (14) and (15), we have:

—53— - Eo (16)
b

D=
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Using Eq. (16), we can write E.. and Epr for r =b as:

B, =(E +22) coss (17a)

fr [¢] 3
b

E_ = (E - fi) cos® (17b)

pr [} b3
Combining Equations (12¢) and (17), we obtain:

€ dA dEo
A, 03 = - + —= (e_-e) 18)
(0, +20¢) NERENE arlepreg) = Eglomog) + e, g (E7eg (
€ +2¢ . .
Defining TP =€ EE:EE— as the particle relaxation time, Eq. (18)
P £
becones:
E dE

da A 3/ - o - )

—+ — =D — 0 _+ — ¢ (19)

dt T T dt

o \r, P P

- 0,7 % _ € ~€g
where o = E‘% and e = E‘%

P p £ p p £
With EO suitably defined, Eq. (19) covers all situations — includ-

ing the time-independent ones treated as a special subcase of the
time-dependent case.

Investigating first the d.c. case, we have:

t<0 E =0
(20)

a3
W
o
tm
]

const

which is the Heaviside unit-step function (14, p. 87). Thus, since

for t >0 EJ is time-independent Eg. (19) becomes:
b3E
o -
= o

T
p p

+

&l

A
T

Le

(21)

o+
W
o

This simple differential equation is readily solved (14, p.7) yiela-
ing:

-t/T
A=bkE o +ce P (22)
o p



16: 53 30 January 2011

Downl oaded At:

8 SHALOM AND LIN

where C remains to be determined. For t = 0, the system behaves
as if the conductivities were non-existent, thus A(0) should be a

function of the permittivities alone:

A(0) = b°E £ (23)
op

which yields the final equation for A:

-t/t -t/T
3 - -
A=bE (5 (l-e P +ee P (24)
o p P
In Eq. (24) t represents the time the particle has been exposed to
the field.
This solution was first found by Jonesll. It is readily seen that

. 1
two cases are to be distinguished 5;

il
o
1
™

t <<Tp , A dielectric regime (25a)
t >>Tp , A =bEO conductive regime (25b)

Now that A has been determined for d.c. fields, we proceed to

find the dielectrophoretic force for the simple case of the dielectric

regime. By Egs. (14), (25a) we have:

’ .3
¢f=Eo(-—ZE - r)cose (26a)
o P
sfr cosf
¢ = -38 ———— (26b)
P (¢} ep + 2ef

From Eq. (21b), the field inside the particle is found as:

£f
E =3——E

+ (27)
P ep 2sf o

The polarization of the particle is, by definition:

P=c (e -e )E = 3¢ g_¢

o' Fp e Fp off pEO (28)

Thus, the dipole moment is:
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3 3 -
1o™P = 41b eoefepEo (29)

[P

p=
Consequently, the dielectrophoretic force is, using Eq. (8):
- > 2
F. = 2nbo ¢ £ VE (30)
dc ofp o

It is readily shown that for the conductive regime:

P = 2mbe e VE
de T TP ELELILVE, (31)

. 11 ) . .
as in Jones . For a mixed regime, with t = Tp’ we have:

Yy

2mbe ¢ B VB (32a)
dc m Eoef dc o

h
where ) e/t -t

B o (l-e )y +ce P (32b)
p p

dc

For the sinusoidal a.c. case a more suitable form of Eq. (12¢) is

obtained by using complex notation, thus we have:

* * 3
OfEfr opEpr (33a)
and
. - i
(0f+1weoef)Efr (cp lweosp)Epr (33b)
. . , iwt
or, expressing Efr and EPr explicitly with Eo = Eme :
. ipt 2A . i A
(0, + dwe ) (E e + 2B) = (5 +ige ¢ ) (B ™t - 2 ) (3a)
£ o f m b3 op m b3

Resorting to factorization, it is readily seen that the solution of

this differential equation is:

£ .
A= 520 +iee (e +2e ) b Ee (35)
P £ o p £

6 -0 _+tiwle _-e )
p p f

Thus, the dipole moment is, as in Egq. (29):

p = 4n€oeonb3Re(A) (36)

where Re stands for 'real part of" and is determined by multi-
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plying the numerator and denominator by the conjugate of the latter

and expressing the field trigonometrically, the result being:'r
- 2 2= ) - =
{0 +T w & )coswt+T wsinwt(c - ) 3
Re(a) =—F P B P PP pg (37)
14+ Tw n
P

: . : : Lo . 16
An equivalent expression was obtained earlier by Benguigui and Llnl :

(e .0 -e 0.) wsinwt+ (coswt)/T
pf /p

Re(A) = (€ _cosut + 3 ——E 2L . — 1 b’E_ (38)
P (0 +20_) 1+ 7w
p £ P
Then the force being
- —»—)—E>
Fac = (p+V) mcoswt (39a)
we obtain from Eqgs.(36), (37) and (39a):
- 2 2- 2 sin2wt = _=
+ + -
. 3 (o pr € _)cos wt rpm——Q———-(op sp) 2
F o =2me _eeb VE (39b)
ac o 2 2 m
L+ 71T w
P
>
Fac
Now, calling 33 2 the polarizability factor and designating
Zﬂeoefb VEm

it by the letter Bac, we can see that the three possible regimes of

the d.c. case exist here as well:

- 2 . .
pr << 1, Bac = cpcos wt conductive regime
- 2 . . .
T w>>1, B = g _cos wt dielectric regime
P ac P
- - sin2wt - -
(o +12w26 )coszwt+r w-igjﬂL'(c -c )
T wrl, B = P P 2 mixed regime
P ac 2 2
1+ rpm

T In Appendix A a different approach is presented permitting inclusion

of the transient effect and covering different field types. The
case of a pulsed field is treated in Appendix B as an illustration.
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In practical applications, only the average force is felt by the
particle at sufficiently high frequencies, so that it is more use-
ful in most cases:

<F >=%IF dt (40)

The resulting average force is:

<F_ > = 2me e b B VB (41)
ac o £ av  rms
where

2 2-

g + 1T Wwe

8av =7 22

1l +1tw

P

The general expression for the force is:

> 3 = 2
F = 2nsoefb BVEO (42)
where
_ -t/1 _ -t/t
1) g=0c(l-e Pr+ce
P p

in d.c. fields with E; denoting the suddenly applied field.

- 2 2~
o_+Twe

1+ T2w2
P

2) B =

for sinusoidal a.c. fields with Eo = Em//f- (rms value) .

As the overall physical significance of all these equations is
hard to yisualize, it is worth trying to explain some of it at this
stage. For a d.c. field and a dielectric regime, the meaning of
the dielectrophoretic force with a polarization factor depending
on the permittivities alone is obvious. The difficulty arises with
conductive liquids, in which case (as can be predicted from the
model, and was actually observed by Gherardi et al}7), the positive

traction effect is eventually reversed owing to intervention
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of an opposing force generated by current-induced polarization.

For cf >>cp, charges arriving at the surface of the particle are not
conducted through it as fast as through the fluid. Consequently,

a net charge builds up on the particle surface, polarizing it along
the lines of current flow with a polarity opposite to the dielectric
one. This opposing force increases until it exceeds the positive
one, causing negative dielectrophoresis. With a pulsed field it is
readily understood that when the pulse time is shorter than 1_, no
charge accumulation can be expected and the dielectric regime can
persist for a lengthy period of time (this obviously implies that
in the dead intervals the charge is dissipated). In an alternating
field, the net charge accumulated by the particle during the first
half of the electric cycle is conducted back into the fluid during
the second half. At low frequencies a half-cycle suffices for the
current-induced polarization to overcome the dielectric one4. At
sufficiently high frequencies this effect vanishes and experience
has shown that at frequencies over a few thousand hertz the dielectric

regime is reestablished — in accord with our theoretical model.

IV. DETERMINATION OF gEi AND ITS SUBSTITUTION INTOC FORCE EQUATION

1) Bead-Type Matrix : Taking first the simplified case of a single

bead, it cen be easily deducted that the field distribution around

the bead (Fig.3) is similar to the one for a spherical particle, thus:

3
a
= — - 43
¢ Eocose (v rz r) (43)

where a is the bead radius and Yy the bead polarization factor,

Y

given as: i £ /T, -t/
Yae =% (L - e )+ oee (44a)
- 2 2~
y = "% (a4p)
ac 1+ Tiwz

where
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o, - of _ € =~ €
fo] = ———— ’ € =
a a +
b b-+2 £ b € 2€
and
Eb + 2€f
T, = €

b o Ob + 2cf

Ob and Eb represent the conductivity and relative permeability of
the bead, tb the time elapsed since the field was applied on the

bead, and Tb the relaxation time of the bead.

From Eq. (43) we have, in cylindrical coordinates:

> 3(bf > 1a3

Er =3y = Eo (1 + 2 r3 ) cos8 (45a)
3¢ 3

B o--Lr_f_7 (Y _ ;

Ee = 39 = Eo ( r3 1) sin® (45b)

Then, the resulting field is:

df "f

Figure 3 - Spherical bead or cylindrical rod
in uniform applied field o
(subscript m denotes matrix)
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_ 2 2 .3
E = (Er + Ee ) (46)
And we can now determine the gradient of E2 as:
2 2
> 2 9" ~ 1 3E” =«
VE® = Kl:— Y + Y ¢} (47)

Combining Egs. (45) and (47), we obtain the radial and azimuthal

components:

> 5 3 3

(VE )r = —37—2 E [Y 3 (3cos26 + 5) +3cos28 +1] (48a)
r
3 3

2.2 a~ 2 a

v = =3y=— i —

(VE )e 3Yr4 Eo sin28 (v r3 + 2) (48b)

The force on a particle is obtained by combining Egs. (42) and (48)

using a dimensionless distance xr, = r/a:

- i
Fr = Kb 3 (3cos26 + 5) + 3cos28 + 1) (49a)
Ta
= ( XL+ i
Fe Kb 3 2} sin26 (49b)
Ta
6mYBe E¢E b
Kb = - — (49¢)
ar
a

The force for a single bead does not tell much on what is really
happening in the matrix where the packing density is around 0.65.
Thus, a different approach is required. A direct one, allowing for
the complexity of the bead matrix, does not appear possible.

In an interesting model recently brought forward by Shapiro et al18 19
the space surrounding the collecting sphere is divided in two regions:
a fluid envelope around the collector and an external matrix which

has the filter porosity €. The radius £ of the fluid envelope is
simply

-1/,
£ = a(l-€) (50)
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The potential ¢ can thus be calculated, using proper boundary
conditions in the Laplace equation. First, however, it is required
to determine ¢€_, the effective dielectric constant of the porous

matrix., The latter may be calculated according to Hashin and>
. 20
Shtrikman™ :

€, +e
1 72
€, = > (51a)
where
1-€ €
1Tt I, € 2T % T T 1€ (510)
€, Eg 3sf €€y 3sb
Now, the potential is expressed in the following form:
23
L <r <o, ¢fl = E_ cos8 (Kl - r) (52a)
r
a3
a<r«<?i, ¢f2 = E, K,cos® (y ;5 - r) (52b)

The values of Kl and K2 were calculated by Shapiro et al}9 for

the dielectric regime as functions of € € and € and are shown

here after adaptation for any fluid (Shapiro et al dealt with aero-
sol separation):

(eb+2£f)(ef-em) - (l—E)(ef—eb)(em+25f)

K (53a)

17T 2 ) (egt2c ) + 2(1-€) (egme ) (e_-e )

3¢ (e, +2e)
K. = b £ (53b)
2 (e t2e.) (eg42e ) + 2(1-€) (egme ) (e € ()

Then $E2 can be determined in the same way as for the single bead,
with a slightly different result. For a < r < &, Eo in the expres-
ion for Kb (Eg. 49c¢) is replaced by E_ K2 while for #<r < =

we have Kl/l—E instead of y and E_ instead of E_. The field

E is defined as:

5

> Eo

E =—¢ (54)
€
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It is readily seen that these equations for ¢f reduce to the ones

derived for the single bead when € + 1, as then % -+ =, em-+ef and

- - ]
170 (¢fl ¢fm) and K, »~ 1. This approach,

previously used for the flow field ™, seems very attractive and could

E, * Ej resulting in K

be applied for various matrix types. It was also successfully used
in magnetic separation with a ball matrix22 to analyze the flow field.

2) Rod-Type Matrix: Here the potential around a single rod in a

uniform applied field is given by (23, p. 128):

2
b = E_ 13; - 1) cose (55)

where a is the rod radius and vy the rod polarization factor as

in Eq. (44), but here we have:

- r f - r f
0r 5 +o Er TS
r £ f
and
€ _+e
r f

g =+
r o 0 +0
r f

Here cr and Er are the conductivity and relative permittivity

of the rod while T, is its relaxation time. Eq. (55) yields:

2
= ya
Er Eo(l + 2 ) cosB (56a)
r
- ya© _ ; 56b)
Ee Eo( r2 1) sin8 (

whence, as for the bead:

2 2
2.2 _ _a Ya 2, ya
(VE )r = -4 -3 Eo( — cos20) (57a)
r by
(VE%) = -4 XEE-EZ sin28 {(57b)
8 3o

The force is obtained by combining Egs. (42) and (57), using the

dimensionless distance ra = r/a:
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r r 2
r
a

Fe = K_ sin26

where 81yBe ¢ E2b3
K = - 0ofo

r 3

ar

a

3. Rod Matrix with Applied Field in Arbitrary Direction:

Taking Eo at an arbitrary angle as shown in Fig. 4, the

potential is given by24

r

2 2
¢ = E [(lé—-— r)cose cosa+(r - X—"’l—)sinesiné]
£ o r
whence

2
E =E <l I L )cos(e+6)
r ] r2

§+
VN
b
1
[
=

9
m+
0

a 2
-4y — in2 (8+8
0 Y 13 Eo sin2( )

CIRCULAR
CYLINDER

Figure 4 - Scheme of spherical particle/
cylindrical rod system

17

(58a)

(58b)

(58¢)

(60a)

(60b)

(61a)

(61b)
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Thus, the force equation becomes:

F =K |-L + cos2(8+§) (62a)
r r 2
r
a
F, = K_ 5in2(6+8§) (62b)
¢} r

Unlike the bead, the above calculation for a single rod is applicable

for an array of rods with a low packing density since then rods are

widely spaced.
V. PARAMETRIC DISCUSSION

1) Common Features of Bead and Rod Matrices

In both cases the force is seen to be directly proportional
to b3, Ez, Eer Y and B and inversely proportional to a25'26.
Thus better yields are expected for strong fields, large particles
and a fine matrix, Y and B exert more influence through their

sign than through their absolute value, the variation interval of y

being (- %-, +1) for the bead and (-1,+l) for the rod, while that
of B is (- %, +1).

8 is critical in determining the capture ability of the filter
in so far as the particle electrical properties are concerned. For
d.c. fields some interesting cases have been describedzs, for
instance:

(a) In most practical applications p > gg while % < Ogi under

such conditions g is positive for t= 0, becomes zero at

o_-¢€

t0==Tp1n —E:—B- and is negative for larger values of t, implying
[+
p

“"negative" dielectrophoresis or in other words no trapping.

de = 1; in this case

is seen to be independent of the liquid permittivity and

(b) For metallic particles TP+ 0, thus B

Bdc
conductivity, and always positive.

(c) For perfectly insulating particles Gp <<0f and t >> Tp we

have Bdc > - % ; this case can be seen as the opposite of the

preceding, now Bdc is again independent of the liquid properties

and always negative.
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In a.c. fields the critical time tO has its equivalent in

ag_ - cf 3
[ P ] . Here as w

the form of a critical frequency w = |————
Tp(ep—ef)

(o]

£
value through zero at Wy to a positive one for w > w, - This

increases for the case €p > € and op < O B passes from a negative

means that the conductive regime is ruling at low frequencies and

the dielectric one is obtainable by increasing the frequency beyond
W .
o

2) Differences between Bead and Rod Matrices

In a bead matrix with y > 0, there is attraction at the contact
: 26
points between the beads for £ > 0 ; in a widely-spaced rod matrix
there are regions of attraction and repulsion aroung the rod as

seen in Fig. 5. Thus at least in theory simultaneous positive and

- repulsion

+ attraction

COLLECTOR
ROD

Figure 5 - Mapping of attraction and repulsion
zones in first quadrant for dif-
ferent values of under static
conditions and B8 > 07°<.
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negative dielectrophoresis is feasible in a rod matrix but not in a
bead matrix. In fact, negative dielectrophoresis is very hard to

obtain since the force is weak. The efficiency of a bead matrix
can be greatly improved by replacing part of the glass beads by

metallic or ferroelectric ones, the cause of the improvement being
not a sizable change of Yy but a jump in a conductive liquid from

a negative value of Yy to a positive one (the metallic beads are
efficient in the conductive regime; the ferroelectric one in the
dielectric regime). Moreover, a matrix of metallic rods can be so
designed as to act as electrodes of alternate polarity; with the
spacing D kept sufficiently small (D/2a < 5), the whole energized
space displays a highly non-uniform field, yielding good separation

R 27
characteristics at lower voltages

VI. EQUATIONS OF MOTION FOR ROD MATRIX

Here only the case of a single rod will be examined. General-

izing Newton's second law of motion, we have:
>

dv
> > >
(m + kag) £ =F +E ¢y (63)

where (mp+kmt) is the virtual mass of the particle, mP being its
actual mass and m. the fluid mass displaced by it; k is a
coefficient depending on its geometry and on the nature of its
motion2 (a conservative estimate for k is 0.5 for a spherical

particle) . vp is the particle velocity. F

G’ the gravity force,

is given by:

4
?G = - §»nb3g (pp—pf)(sinezr + coseze) (64)

> +
where ir and ie are unit vectors in the radial and azimuthal

directions respectively, g is the gravity acceleration; pp and
>

Pe the particle and fluid densities. Fp is the drag force.

A Stokesian drag law is applicable for particle Reynolds numbers

much smaller than 1, i.e. Rep = ZVObpf/n <<1 (Vo is the superficial

velocity in the separator), Thus we have:
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F_=6m(v, - 3p)b (65)

where n is the fluid viscosity. The flow regime around the rod is
governed by the rod Reynolds number Rer = 2Voapf/n. Two cases

have to be distinguished as reported by Gerber and Birss

a) Rer >> 1 potential flow

b) Rer << 1 creeping flow

These two cases fall under laminar flow. 1In the first case, the

flow potential is given as (referring to Fig. 4):

2
¢ =V, (r+ a_r ) cos (8~a) (66)
then -> > a2 a2
Ve=-Vg = —Vo[(l—;—z— )cos(e—u)ZR -1+ 3 )sin(e—a)'{e] (67)

. . . 3
The creeping flow equations were derived by Zebel ° from the

theoretical work of Lamb31:
> r a2 >
Vf = - VOCL[(2JZ,n ; -1 + r—2— ) COS(e"(!) lR
r a2 7
~<2£n =+ 1 - ——) sin(8-a)1i ] (68a)
a 2 ]
r
2
CL = 1/4n (7.4/Rer) (68b)

The equations of motion for a particle in potential flow are given

below, similar ones can be written for creeping flow. For a more

. . . . 32
convenient treatment we introduce the dimensionless variables™ " :

ta = Vot/a , r, = r/a

and the dimensionless groups:

2 2 . . . X
= + t
B 6Eoeoefys/vo(pp pf/2) dielectrophoretic/inertial (69a)
2 . . . .
G = (pp—pf)ag/vo(pp+pf/2) gravitational/inertial (69b)
S = 2Vo(pp+pf/2)b2/9na inertial/viscous (69c)
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where G and S represent respectively variants of the Froude and

Stokes numbers.

The value of Eo is function of the field type. For d.c.,
EO = const.; for sinusoidal a.c. fields two cases must be disting-

uished:

1) Low frequencies, for which Eo = Emcos(Mt+¢), where ¢ is the
phase associated with the instantaneous value of EO at the moment
of entry of the particle into the separation cell (t=0), so

¢ = cos-llEo(t=O)/Em]. Obviously, when dealing with a suspension,
¢ takes on a different value for each particle; thus at low
frequencies the trajectory of a particle does not depend only on w

but also on ¢33’34.

2) High frequencies, for which Eo = Em//f; in this case the part-
icle "feels" an average force with only the rms value of the field

to be taken into account.

For pulsed fields the situation is very similar to sinusoidal

fields; the same two cases must be distinguished, but here
o
Eo = Em p> ancos(nmt+¢) at low frequencies while at high frequencies
n=0
Eo is found from the applicable rms value.

Thus in the general case, the following set of second-order

differential equations is obtained:

2
dry /a8 \? 8
— - I, E) =-—3 [—Y—2- + cos2(6+6)]
dt, a *a Ta 4
r
a
- Gsiné - l-[(l - —% ) cos(8-0) + —/— (70a)
8 r at,
2 dr a
a‘e ( a) (de ) B . ..
r, —5 + 2 {5 {55—) = - —3 sin2(8+4)
a dtz at_) \at_ o3
1 1 , dae
- Gcos8 + s [(1 + —;7 ) sin(8-a) - T, at, ] (70b)

a
More details are provided in Ref.3l. For small Stokes and Froude

numbers the inertial and gravity terms may be neglected and Egq. (70)
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simplifies to a set of first-order differential equations:

dr
a
2 BS | X, cos2(8+8)] - (1 - —=— )cos(6-a) (71a)
dt 3 2 2
a r r r
a a a
a8 BS . .
e =38 _BS_in2(e+8) + (1 + - )sin(e-a) (71b)
a at 3 2
a r r
a a
where 4b2E2€o€fYB
BS = BT dielectrophoretic/viscous (71c)

Equations (71) have no analytical solution except for Y = 029’30;

this solution has been studied in detail for viscous flow by Shalom
and Lin35. The general case requires numerical analysis, and
examples of trajectories in d.c. fields were given for potential
flow32 and viscous flow35 in recent publications. Low-frequency
effects on the trajectories have been also investigated for sinu-
soidal fields33'34.

Determination of the trajectories is useful in investigating
the mechanism of particle trapping but is also helpful in finding
the filter efficiency and we shall see how. In tracing the particle
trajectories for particles at various positions, a critical traject-

ory can be identified (Fig. 6) corresponding to a capture radius,

3
Y
/ COLLECTOR
_ \/ Rop
R 1
———I c ¢ \} X
v
—o—’ \
e, T

Figure 6 - Schematic explanation of critical
trajectory32.
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Rc’ equal to the coordinate of the particle at the point of depart-
ure. Then R, can be plotted against the dimensionless group BS
(see Eg.(71c)) which is most characteristic of the separation
process32'35. Then a capture area per unit length can be defined
as 2R a {(Fig. 7) which is in fact a measure of the probability of
captuie in a single rod-particle interaction. This probability

can then be easily incorporated in a simple statistical expression
for the extraction efficiency of the particles, Ef, per filter
length and the volume packing of the rods 1 - €. Zebel30 obtained

this efficiency as:

2a M
Ef—l—(l—Rc—D) (72)

where m 1is the number of layers of rods. In terms of the volume

packing of the rods, Eq. (72} becomes:

_ 1-€\%]m
Ef =1 - [l - 2RC (T—) ] (73)

2 Rca

. b
- O,
‘ a

Figure 7 - Capture area per unit length of rod
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19,37,38

Other expressions are found in literature with an exponent-

. 38
ial term, for instance

E = 1 - exp [—4(l—€)RcL/3na] (74)

where I is filter length.
Anyhow, it should be borne in mind that Egs.(73), (74) are

approximately correct only for a separation matrix in its early

stages of separation. The build-up of particles on the rod surface

distorts both the electric and the flow fields in its vicinity gradual-

ly decreasing the capture radius down to zero for which saturation

is obtained. A more sophisticated model dealing with this equilibrium

situation is necessary to take loading factors into consideration

and this is the object of future work.

VII, CONCLUSION

Various theoretical aspects of matrix dielectrophoresis have
been reviewed in an attempt at describing the complex situation
created by the large number of parameters: physical, operating and
geometric. Perhaps more questions have been raised than answers
provided throughout this work clearly indicating that multigradient

dielectrophoresis is still in its infancy.

Specialists familiar with high gradient magnetic separation
can easily note the close similarity existing between the magnetic
and dielectric traction forces (for the dielectric regime) with H
replaced by E and n by €. Obviously, what makes dielectric
separation much more intricate is the existence of conductivity
parameters, transient effects and the fact that it is possible to
use a.c. and pulsed electric fields. As for the influence of para-
meters common to both processes (e.g. Vo' n, a, b, vy, B) it may be
safely stated that the same effects are to be expected in both areas
thus the experience gathered in magnetic separation can be applied

in the dielectric area.
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APPENDIX a: DETERMINATION OF POLARIZABILITY FOR A SUDDENLY APPLIED

SINUSOIDAL FIELD (TRANSIENT EFFECT)

Defining Eo = Emcosmt and using Eq. (19), we have:
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7&

o
= b3E (—E cospt - we sinmt) (A1)
m'cp P

o |

Solving this differential equation, we obtain:

b3Em /Ty o _ -t/1
A= —— I e (—E coswt = € msinwt)dt+c e P (A2)
t/t T P
e P p
and
- 2 2- ) - -
3 (0 +7 w e )coswt + T _wsinwt (0 - ) -t/Tp
A =DbE PP P P +Cce (A3)
m 2 2
l+1tw
As for the d.c. case we have:
A(0) = bE £
m p
Thus:
b3Em - 2 2- - = “t/T
A = ———5——-[(0 + T we Jecoswt + (0 _-€ ) {1 wsinwt-e P (A4)
14+1%,2 P P P PP p

For t »>Tp Eq. (ad) is seen to be identical to Eq. (37). An equival-

ent expression was obtained earlier by Benguigui and Lian:
coswt e t/
3 [- €g0 -EESE, wsinwt + pe P _ o )
A=Db Em[epcosmt+ 3 7 %’2 P ] (A5)
(a_+20.) 1+ 1w
p £ p

APPENDIX B: DETERMINATION OF POLARIZABILITY FOR PULSED FIELD
INCLUDING TRANSIENT EFFECT

This type of field is especially difficult to deal with in
view of the need for a suitable function describing its time pattern.
As an example, let us examine the step function shown in Fig. 8.

This simple case is readily treated with the aid of a Fourier
series (35, p.142):

+
; S lcoskwt]

" (B1)

ERLY

E0=Em[;+
n=1

where k = 2n-1.
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Using Eq. (19), we obtain

g o n+l 26 w o
da + —é-=b3E I—B- }”+E_ z =D coskot | + —E— Z (-1)"sinkwt
dt T m 11 2 7 k T
P P n=1 n=1
(B2)
Then, as in Appendix A:
b3E t/ o n+l
T *®
A= m J'e p/ R l+E Ei——l-)——coskwt +
t/1 T 2 m k
P P n=1
e
2e w L n -t/1
+ —ﬂL Z (-1 sinkwt} dt+c e P (B3)
n=1
Whence
o [ coskwt+kT_wsinkwt
- +1
A—b3m{—=‘23 %[o T (-n" —E 4
n=1 kK(1+k" 1t w")
P
_ sinkwt-kT_wcoskwt 1 -t/T
£ 1T we Z(-1) 292 5 ]f +ce P (B4)
P =1 1+ k°tw
P
Ey Y
—T/2—
Em-- _-__]
1
T
| t
|
1
T 1

Figure 8 -~ Example of pulsed field
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or
o ® (—l)n(E ~g )kt msinkwt+(—l)n+lcoskmt(E k212m2+5 )
A=b%:{£+g b> P p_ p PP p}
ml2om o k(1 + sz;wZ)
-t/1
+ ce P (B5)

Using the same initial condition as for the other cases, we have:
5 - f k%t + 5
3 -
c =Db°E [E __p_2 = (_l)n+l _.P__E.—B] (B6)
m p 2 L

n=1 k(l+k21§w2)

As in the sinusoidal case, a much simpler expression is obtained

for the conductive and dielectric regimes for t >>TP:

1) 0 << 1 (conductive regime):

o0

A= b3EmB [% + % > (_l)n+l costwt] (87)
P n=1

Comparing with Eq. (Bl), we see that:

A=DbEGo (B8)

2) pr >> 1 (dielectric regime}:

3 EE, ZEE ; n+l coskuwt
A=b Em 5t (-1 —x (B9)
n=1
or
3 - baEm _ _
A=DbEce + (c_ - €) (B10O)
o'p 2 p p
Whence
A= b3E E_ + const. (B11)
op

Eq.(B7) is analogous to its counterpart of a sinusoidal field, but

Eq. (Bll) differs by the additive constant.



