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SEPARATION AND PURIFICATION METHODS, 16(1), 1-30 (1987) 

MULTIGRADIENT DIELECTROPHORESIS: THEORETICAL ASPECTS 

Allen L. Shalom and Israel J. Lin 
Mineral Engineering Department 

Technion - Israel Institute of Technology 
Haifa 32000, Israel 

I. INTRODUCTION 

Dielectrophoresis is a long-established process used in various 

areas of modern technology for separation of particles according to 

dielectric properties. These include and petro- 

chemical3 as well as mineral processing4 applications j a comprehens- 

ive review of the diverse possibilities of use is given by Lin and 

Benguigui . The particles may be in any state (solid, liquid, gase- 

ous) while the liquid may be a liquid or a gas, separation being 

possible only when the components display different polarization 

Properties. There are three main ways of segregating particulates: 

deflection , trapping5 and levitation . 

5 

4 6 The process may consist in 
solid/solid4 ’, liquid/liquid8, solid/liquid5 or gas/liquid 9 
separation, and in biological applications may even differentiate 

between living and dead cells”. 

judicious exploitation of geometric (particle size and shape), 

physical (permittivity, conductivity, density) and operational 

(flow rate, field intensity and frequency, temperature) parameters. 

Two main dielectrophoretic techniques are currently in use: open- 

gradient2I4 and multigradient3I5. The latter is a new development 

initiated by the Gulf C O . ~  whereby glass beads are used to produce 

high gradients responsible for trapping of particulates and is 

The desired split is obtained by 

1 
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2 SHALOM AND LIN 

obviously most advantageous, since it allows high throughputs at 
relatively low capital and operational costs. However, this break- 

through has not been followed by a successful commercialization due 

to three main pitfalls: 

1) The Gulf device is a batch system (limited capacity). 

2 )  The matrix consists of glass beads (cleaning problems, low 

permittivity) . 
3) The power supply is only d.c. (no flexibility in dealing with 

conductive liquids) . 
Put in other words, this system is unable to deal properly with 

suspensions over a few percent solids, ineffective in trapping 

particulates in slightly conductive liquids, and inadequate for S-S 

separation. 

In this context, the research group at the Technion investigated 

aspects likely to yield satisfactory answers to the problem listed 

above, as well as additional ideas: 

1) Sophisticated matrices with a view to better yields, e.g. BaTi03 

beads (high permittivity) and mixtures of metallic rods or 

beads with glass beads (high conductivity). 

2 )  Grid electrodes serving simultaneously as matrix. 

3) A two-dimensional interdigitized electrode system for qualitative 

analysis of liquids. 

4) Sinusoidal a.c. or pulsed d.c. fields, permitting processing of 
conductive liquids. 

5) A continuous carrousel device combining very high capacity and 

relatively small dimensions. 

6 )  Stable dielectric suspensions of submicronic particulates (BaTi.03) 

providing a high-permittivity medium for S-S fractionation. 

The present paper offers an overview of the various theoretical 
aspects of matrix dielectrophoresis, with special emphasis on rod- 

type matrices, 

operation, being easier to clean and permitting higher loadings. 

which have proved to be better suited to industrial 
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MULTIGRADIENT DIELECTROPHORESIS 3 

11. DIELECTROPHORETIC FORCE 

The simplest  and m o s t  a t t r a c t i v e  approach is t h e  one p u t  forward 

by Pohl l ,  Jones’’ and more recent ly  by Benguigui and Linl’, whereby 

the  d i e l ec t rophore t i c  force  i s  obtained by summing t h e  forces  on two 

equal and opposite e l e c t r i c  charges ( ?  q)  located a t  a vec tor  d i s t ance  

8 
n e t  force  on t h i s  s m a l l  dipole being: 

apa r t  i n  a non-uniform e l e c t r i c  f i e l d  as shown i n  Fig. 1,‘ t he  

Using a form of Taylor ’s  s e r i e s :  

( 2 )  
+ +  + + - f  + + +  
E o ( r  + d) - E ( r )  = (d*V)Eo + higher-order terms, 

0 

+ 
r e t a in ing  only the  f i r s t  term s ince  

product q*d  a s  an e l e c t r i c  d ipole  moment p - w e  have: 

d -f 0 ,  and in t e rp re t ing  the  
-f + 

( 3 )  
-b + + +  
F = (p*V)E0 

* 

A 
2 

Figure 1 - Simple finite dipole  model 
used t o  ca l cu la t e  d i e l ec t ro -  
phore t ic  f o r c e l l  
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4 SHALOM AND L I N  

T h i s  equat ion  i s  v a l i d  i n  p r a c t i c a l  a p p l i c a t i o n s ,  p rovided:  

1) The par t ic le  i s  small  compared t o  t h e  scale of  non-uni formi t ies  

of  t h e  imposed e lec t r ic  f i e l d .  

2) The macroscopic f i e l d  remains u n a f f e c t e d ,  implying high d i l u t i o n  

( l a r g e  d i s t a n c e s  between i n d i v i d u a l  p a r t i c l e s ) .  

3 )  Higher-order moments are n e g l i g i b l e ,  which i s  n e c e s s a r i l y  t r u e  i f  
+ 
d -+ 0. 

+ +  
The operator ( p - 0 )  can be  p u t  i n  a more f a m i l i a r  form u s i n g  a 

v e c t o r  t ransformat ion:  

+ + + - +  + 3 +  3 3 + +  -+ -+ 3 
F = (p 'v)Eo = v(p-Eo) - (Eo*V)p-p X ( V  WE ) - E x ($  X p ' )  ( 4 )  

+ +  
Then, s e t t i n g  p = a E  v where a i s  t h e  p o l a r i z a b i l i t y  t e n s o r  and 

v t h e  par t ic le  volume, w e  o b t a i n :  
0 

where 
-+ + +  + -+ - + +  3 + +  

( E o ' v ) E o  = BE: - (Eo*V)Eo  - 2Eo x ( V  x E o )  

3 
VE: 

2 

t h u s  
-+ + -+  

(Eo 'V)Eo = - - 

By Eqs. ( 5 ) ,  ( 6 ) ,  t h e  f i n a l  equat ion  f o r  t h e  f o r c e  is: 

The f o r c e  8 i s  t h u s  sccn  t o  c o n s i s t  of  two components: 
+ + VE; 

F1 = av - 2 

-+ + - + +  
F2 = -avE X ( V  X Eo) 

0 

-+ -+ 
where F1 is  t h e  d i e l e c t r o p h o r e t i c  f o r c e ,  w h i l e  F2 i s  a l e v i t a t i o n  

f o r c e  which i s  a f u n c t i o n  of  t h e  a s s o c i a t e d  magnetic f i e l d  produced 

by t h e  a l t e r n a t 4 n g  e lec t r ic  f i e l d .  is a f o r c e  n o t  n u l l  i n  a . c .  

since VXE = -- and it can b e  shown t o  be  p r o p o r t i o n a l  t o  a 

+ 
F2 

-+ + 3B 
at 
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MULTIGRADIENT DIELECTROPHORESIS 5 

term E E ,,, where E~ is the absolute permittivity of free space, 

cf the fluid relative permittivity and w the angular frequency. 

This term is zero for quasistatic fields and it becomes significant 

only for frequencies in the gigahertz range. However, dielectro- 

phoresis in liquids is done at frequencies varying up to the mega- 

hertz level, thus F2 can be readily neglected. 

o f  

+ 

111. DETERMINATION OF POLARIZATION FOR A SPHERICAL PARTICLE IN A 
FLUID (QUASISTATIC FIELDS) 

Laplace's equation in the spherical case yields the following 

solution for the potential outside and inside the sphere13 (see 

Fig. 2): 

D 

X 

Figure 2 - Spherical particle in uniform 
applied field Eo 
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6 SHALOM AND L I N  

t h e  subsc r ip t s  f ,  p denoting t h e  f l u i d  and p a r t i c l e  r e spec t ive ly .  

With four  c o e f f i c i e n t s  t o  determine, four  boundary condi t ions  a r e  

needed. A t  t he  su r face  of t h e  sphere (r  = b ,  b being t h e  sphere 

r a d i u s ) ,  we have: 

d‘s 
UfEfr  - E = - - 

P P’ d t  

where of and CJ are re spec t ive ly  t h e  f l u i d  and p a r t i c l e  conduct- 

i v i t i e s ,  a t h e  s u p e r f i c i a l  charge dens i ty  a t  the  f l u i d / p a r t i c l e  

i n t e r f a c e ,  and E t h e  r e l a t i v e  p e r m i t t i v i t y  of t h e  p a r t i c l e .  

P 

P 
Equations (12a) ,  (12b) express t h e  con t inu i ty  of t h e  t o t a l  

cu r ren t  (conduction anddisplacement) and r e s u l t  i n :  

dE 
o E  dEf r  - o E  + E E  + 

f f r  + ‘o‘f dt - p p r  o p (12c) 

This equation has  been used by Pohl’, Jones’’ a s  w e l l  a s  Benguigui 

and Lin12 under var ious  forms. 

Two add i t iona l  boundary condi t ions  are t h a t  a t  l a rge  d i s t ances  from 

t h e  sphere t h e  appl ied  f i e l d  remains undisturbed and a t  t h e  cen te r  

of t h e  sphere t h e  p o t e n t i a l  must s t a y  f i n i t e :  

E r cos0 * B = -E ( 1 3 4  
0 = - 

@ f i n i t e  * C = 0 
P 

Using Eq. ( 1 3 ) ,  t h e  p o t e n t i a l  

q f  = (5 - Eor)cosB 

$P = Dr cOse 

(13b) 

becomes : 

(14) 

(15) 

Combining E q s .  (11) , (14 )  and (15) , w e  have: 

A 

b3 
* O  

D = - -  (16) 
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MULTIGRADIENT DIELECTROPHORESIS 7 

Using Eq. (16), we can write Efr and E for r = b as: Pr 

(18) A €0 dA dEO 
( 0  + 2 0  ) - +  - - ( E  +2E ) = E ( 0  - a f )  + Eo dt ( E  -Ef) p f b3 b3 dt p f O P  P 

E +2€ 
Defining ? = E as the particle relaxation time, Eq. (18) p 0 a +20 

P f  
becomes : 

E 
d A A  
dt T 
- +  _ =  b3 - 

P 
a -a E - E  

where 0 = and = p a +2a p E +2E 
P f  P f  

(19) 

With Eo suitably defined, Eq. (19) covers all situations - includ- 

ing the time-independent ones treated as a special subcase of the 

time-dependent case. 

Investigating first the d.c. case, we have: 

t < O  E o = Q  

t 5 0 E = const 
0 

(20 )  

which is the Heaviside unit-step function (14, p. 87). Thus, since 

for t 5 0 E is time-independent Eq. (19) becomes: 
0 

d A A  b3Eo - 
d t + F = y  P P  P 

C l  - 

(21) 

t a O  

This simple differential equation is readily solved (14, p.7) yield- 

ing: 
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a SHALOM AND L I N  

where C remains to be determined. For t = 0, the system behaves 

as if the conductivities were non-existent, thus A ( O )  should be a 

function of the permittivities alone: 

3 -  (23) A ( 0 )  = b E E 
O P  

which yields the final equation for A :  

In Eq. (24) t represents the time the particle has been exposed to 

the field. 

This solution was first found by Jones’’. 

two cases are to be distinguished : 

It is readily seen that 
15 

(25a) 

conductive regime (2%) 

3 -  A = ~ E E  dielectric regime 
O P  t <<‘I 

P ’  

P ’  
3 -  

A = b E o  
O P  t > > T  

Now that A has been determined for d.c. fields, we proceed to 

find the dielectrophoretic force for the simple case of the dielectric 

regime. By Eqs. (14), (25al we have: 

E r cost3 f $ = -3E 
O E  + 2 E  

P f  P 

From Eq. (21b), the field inside the particle is found as: 

E = 3 -  p E ;2Ef Eo 
P 

The polarization of the particle is, by definition: 

(27) 

Thus, the dipole moment is: 
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MULTIGRADIENT DIELECTROPHORESIS 

4 3  3 -  p = -ab P = 4ab E E E E 3 o f p o  

Consequently, the dielectrophoretic force is, using Eq. ( 8 ) :  

+ 3 - + 2  
Fdc = 2ab E E E VEo 

O f P  

It is readily shown that for the conductive regime: 

+ 2 - + 2  
Fdc = 21rb.k E u VEo 

O f P  

as in Jones’’. For a mixed regime, with t = T we have: 
P’ 

+ 3 + 2  
Fdc = 21rb E ~ E ~ B ~ ~ V E ~  

9 

( 2 9 )  

32a) 

32b) 

For the sinusoidal a.c. case a more suitable form of Eq. (12~) is 

obtained by using complex notation, thus we have: 
* * 
ufEfr = u E P Pr 

and 
( u  +iwE E )E = ( u  +iwE E )E f o f  fr p o p  pr 

iwt . or, expressing Efr and E explicitly with Eo = E e . Pr m 

iwt 2A iwt - A 
(af + iwEoEf) (E e + -) = ( u  +iwE E ) (Erne ) (34) 

b m b3 P O P  

Resorting to factorization, it is readily seen that the solution of 

this differential equation is: 

Thus, the dipole moment is, as in Eq. (29) : 

(36) 3 p =  TIE E E b Re(A) o f 0  

where Re stands for “real part of” and is determined by multi- 
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10 SHALOM AND LIN 

plying the numerator and denominator by the conjugate of the latter 

and expressing the field trigonometrically, the result being:' 

2 2- (0 +T w E )coswt+r wsinwt(o -E ) 

Re(A) = 2 2  b3Em 

P 
l + T w  

(37) 

An equivalent expression was obtained earlier by Benguigui and Linl': 

( E  a -E u ) wsinwt+(coswt)/r 
f .  '1 b3Em (38) 

f p  p 
2 2  

1 + T W  
2 Re(A) = [ E  coswt + 3 

P (0 +20f) 
P P 

Then the force being 

+ 

we obtain from Eqs. (36), (37) and (394 : 

- 2 2- 2 
(U +T W E )COS Wt+T 0)- (0  

P + 
Fac = 2 n ~ ~ ~ p  2 2  

P 
1 + T W  

(39b) 

+ 

the polarizability factor and designating FaC Now, calling 
~'TIE~E$I 3+ VEm 2 

it by the letter Bat, we can see that the three possible regimes of 
the d.c. case exist here as well: 

T w << 1, BaC = cos 2 wt conductive regime 
P P 

- 2  
T 0 >> 1, BaC = E COS wt dielectric regime 
P P 

2 2- 2 sin2wt - - ( z  +'T W E ) C O S  Wt+T W- ( 0  -E ) 
mixed regime 2 2  

P 

T W W 1 , B  ac 1 + T W  P 

i In Appendix A a different approach is presented permitting inclusion 
of the transient effect and covering different field types. 
case of a pulsed field is treated in Appendix B as an illustration. 

The 
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11 MULTIGRADIENT DIELECTROPHORESIS 

In  p r a c t i c a l  appl ica t ions ,  only the  average force  i s  f e l t  by the  

p a r t i c l e  a t  s u f f i c i e n t l y  high frequencies,  so t h a t  it i s  more use- 

f u l  i n  m o s t  cases:  

T 
1 

<F > = - I  d t  ac T O  

The r e su l t i ng  average force  is: 

> = 2 a ~ ~ s ~ b  3 Bav?Eks 
<Fat 

where 

The general  expression f o r  t he  force  is:  

-+ 3 + 2  
F = 2nEoEfb BVEo 

where 

+ 
i n  d .c .  f i e l d s  with E denoting t h e  suddenly applied f i e l d .  

0 

f o r  s inusoida l  a.c.  f i e l d s  with E = E /fi (rms va lue ) .  o m  

As t h e  o v e r a l l  physical  s ign i f icance  of a l l  these  equations is 

hard t o  v i sua l i ze ,  it i s  worth t ry ing  t o  explain some of i t  a t  t h i s  

s tage .  For a d . c .  f i e l d  and a d i e l e c t r i c  regime, t h e  meaning of 

the  d i e l ec t rophore t i c  force with a po la r i za t ion  f a c t o r  depending 

on the  p e r m i t t i v i t i e s  alone i s  obvious. The d i f f i c u l t y  arises with 

conductive l i q u i d s ,  i n  which case (as can be y e d i c t e d  from t h e  
I/ 

model, and was ac tua l ly  observed by Gherardi e t  a l .  ) ,  t h e  pos i t i ve  

t r a c t i o n  e f f e c t  i s  eventually reversed owing t o  in te rvent ion  
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12 SHALOM AND LIN 

of an opposing force generated by current-induced polarization. 

For a > > a  charges arriving at the surface of the particle are not 

conducted through it as fast as through the fluid. Consequently, 

a net charge builds up on the particle surface, polarizing it along 

the lines of current flow with a polarity opposite to the dielectric 

one. This opposing force increases until it exceeds the positive 

one, causing negative dielectrophoresis. With a pulsed field it is 

readily understood that when the pulse time is shorter than T no 

charge accumulation can be expected and the dielectric regime can 

persist for a lengthy period of time 

in the dead intervals the charge is dissipated). 

field, the net charge accumulated by the particle during the first 

half of the electric cycle is conducted back into the fluid during 

the second half. At low frequencies a half-cycle suffices for the 

current-induced polarization to overcome the dielectric one . At 

sufficiently high frequencies this effect vanishes and experience 

has shown that at frequencies over a few thousand hertz the dielectric 

regime is reestablished - in accord with our theoretical model. 

f P' 

P' 

(this obviously implies that 

In an alternating 

4 

IV. DETERMINATION OF $E: AND ITS SUBSTITUTION INTO FORCE EQUATION 

1) Bead-Type Matrix : Taking first the simplified case of a single 

bead, it CZI~ be easily deducted that the field distribution around 

the bead (Fi9.3) is similar to the one for a spherical particle, thus: 

where a is the bead radius and y the bead polarization factor, 

- 2 2- 
b 
2 2  
b 

Ub + T W Eb 

l + T W  

- 
yac - 

where 
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MULTIGRADIENT DIELECTROPHORESIS 13 

and 
E b  + 2 E f  

'b = €0 ub + 2uf  

ob and E b 
t h e  bead,  

bead ,  and T t h e  r e l a x a t i o n  t i m e  o f  t h e  bead. 

r e p r e s e n t  t h e  c o n d u c t i v i t y  and r e l a t i v e  p e r m e a b i l i t y  o f  

5 t h e  t i m e  e l a p s e d  s i n c e  t h e  f i e l d  w a s  a p p l i e d  on t h e  

b 

From E q .  ( 4 3 )  w e  have,  i n  c y l i n d r i c a l  c o o r d i n a t e s :  

3 + 
ar r 

3 1 ''f 
( E - 1) s i n e  + 

Ee = - - - =  r a e  0 3 

Then, the r e s u l t i n g  f i e l d  is:  

F i g u r e  3 - S p h e r i c a l  bead or c y l i n d r i c a l  rod 
i n  uniform a p p l i e d  f i e l d  &, 
(subscript m d e n o t e s  m a t r i x )  
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2 2 1  E = ( E  + E  ) r O  

SHALOM AND L I N  

2 And w e  can now determine t h e  g r a d i e n t  o f  E as: 

Combining E q s .  (45)  and (471, w e  o b t a i n  t h e  r a d i a l  and az imutha l  

components: 

3 

I Y 2  4 0  r 
( 3 ~ 0 . ~ 2 0  + 5)  + ~ C O S ~ O  +11 - + 2  a3 2 a 

(VE ) r  = -3y- E 

The f o r c e  on a p a r t i c l e  i s  o b t a i n e d  by combining Eqs. (42)  and (48)  

u s i n g  a d imens ionless  d i s t a n c e  r = r/a: 

2 3  
61Q'6EoEfEob 

4 % = -  ar  a 

The f o r c e  for  a s i n g l e  bead does n o t  t e l l  much on what is r e a l l y  

happening i n  t h e  m a t r i x  where t h e  packing d e n s i t y  i s  around 0.65. 

Thus, a d i f f e r e n t  approach is r e q u i r e d .  A d i r e c t  one,  a l lowing  f o r  

t h e  complexity of  t h e  bead m a t r i x ,  does n o t  appear p o s s i b l e .  
18,19 I n  an i n t e r e s t i n g  model r e c e n t l y  brought  forward by Shapi ro  e t  a l .  

t h e  space sur rounding  t h e  c o l l e c t i n g  sphere  i s  d i v i d e d  i n  two r e g i o n s :  

a f l u i d  envelope around t h e  collector and an e x t e r n a l  m a t r i x  which 

h a s  t h e  f i l t e r  p o r o s i t y  E.  The r a d i u s  Q, o f  t h e  f l u i d  envelope i s  

, 

simply 

-V3 
Q, = a(1-€1 
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MULTIGRADIENT DIELECTROPHORESIS 15 

The p o t e n t i a l  $ can thus  be ca l cu la t ed ,  using proper boundary 

conditions i n  t h e  Laplace equation. F i r s t ,  however, it i s  requi red  

to  determine E ~ ,  t he  e f f e c t i v e  d i e l e c t r i c  cons tan t  of t he  porous 

matrix.  

Sh tr ikman : 

The l a t t e r  may be ca lcu la ted  according t o  Hashin and 
20 

Em = - ( 5 1 4  
E +E 1 2  

2 
where 

(51b) 
1-E E 

1-E E l  = E f  + ; E 2 = E  + 
I + -  b -  + -  

E -E 3Ef E f - E b  3 5  b f  

N o w ,  the  p o t e n t i a l  i s  expressed i n  the  following form: 

The values of K1 and K2 were ca lcu la ted  by Shapiro e t  a l l9  f o r  

t he  d i e l e c t r i c  regime cls func t ions  of E b ,  cf and E and a r e  shown 

here a f t e r  adaptation f o r  any f l u i d  (Shapiro e t  a1 d e a l t  with aero- 

sol separa t ion)  : 

Then $E2 

with a s l i g h t l y  d i f f e r e n t  r e s u l t .  

ion f o r  5 (Eq. 49c) is replaced by Em K2 while f o r  L < r  < m 

w e  have K /1-E i n s t ead  of y and Em i n s t ead  of Eo. The f i e l d  

Em is defined as: 

can be  determined i n  the  same way as f o r  the  s i n g l e  bead, 

a < r < II, Eo i n  t h e  expres- For 

1 

-+ 
-+ EO 
E m = - f  

Em 

(54)  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
3
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



16 SHALOM AND L I N  

I t  i s  r e a d i l y  seen t h a t  t hese  equations f o r  $f reduce t o  t h e  ones 

der ived  

E, -+ E~ r e s u l t i n g  i n  K1 -+ 0 ( $  -+ $fm) and K2 -+ 1. This  approach, 

prev ious ly  used f o r  t he  flow f i e l d  , seems very a t t r a c t i v e  and could 

be appl ied  f o r  var ious  matrix types.  I t  was a l s o  successfu l ly  used 
i n  magnetic separa t ion  wi th  a ba l l  matrix22 t o  analyze the  flow f i e l d .  

f o r  t h e  s i n g l e  bead when E .+ 1, a s  then R -+ a, E ~ + E ~  and 

f121 

2 )  Rod-Type Matrix: Here t h e  p o t e n t i a l  around a s i n g l e  rod i n  a 

uniform applied f i e l d  i s  given by (23, p.  1 2 8 )  : 

where a i s  t h e  rod rad ius  and y t h e  rod p o l a r i z a t i o n  f a c t o r  a s  

i n  Eq. (44) , b u t  here we have: 

0 -0 - r f  

r f  
CJ = -  
r CJ +CJ 

E -E - r f  
r E +E 

r f  
E = -  

and 
E + E f  

T = E  - r o u + u  r f  

Here 0 and E a r e  the  conduct iv i ty  and r e l a t i v e  p e r m i t t i v i t y  

of the  rod while T~ i s  i t s  r e l axa t ion  t i m e .  Eq. (55) y i e lds :  

E 0  = Eo( - ya' - 1) s ine  2 

whence, as f o r  t h e  bead: 

2 2 

3 0  2 ($E2)r  = -4 ya E ( + cos2e) 
r 

' 2  L 2  
(VE ) e  = -4 E sin20 3 0  

The fo rce  is obtained by combining E q s .  (42) and (57 ) ,  us ing  t h e  

dimensionless d i s t ance  r = r / a :  a 
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MULTIGRADIENT DIELECTROPHORESIS 1 7  

F~ = K ( 

F~ = K s in28  

+ cos2e) 
r 2  

a 

3 .  Rod Matr ix  w i t h  Applied F i e l d  i n  A r b i t r a r y  D i r e c t i o n :  

Taking E a t  an a r b i t r a r y  a n g l e  as shown i n  F i g .  4 ,  t h e  

p o t e n t i a l  is g iven  by24: 

( r2) 1 2 
,+,f = E o [ ( ~  - r)cos, cosb+ r - s i n e s i n 6  

whence 

(59)  

C I R C U L A R  
C Y L I N D E R  I 

F i g u r e  4 - Scheme of  s p h e r i c a l  particle/ 
c y l i n d r i c a l  rod  system 
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18 SHALOM AND LIN 

Thus, the force equation becomes: 

Unlike the bead, the above calculation for a single rod is applicable 

for an array of rods with a l o w  packing density since then rods are 
widely spaced. 

V. PARAMETRIC DISCUSSION 

1) Common Features of Bead and Rod Matrices 

In both cases the force is seen to be directly proportional 
3 2  25,26 to b , Eo, E ~ ,  y and 6 and inversely proportional to a 

Thus better yields are expected for strong fields, large particles 

and a fine matrix, y and 0 exert more influence through their 

sign than through their absolute value, the variation interval of y 

being ( -  , +1) for the bead and (-l,+l) for the rod, while that 

of 6 is ( -  2, +l). 1 

$ is critical in determining the capture ability of the filter 

in so far as the particle electrical properties are concerned. For 

d.c. fields some interesting cases have been described , for 
instance : 

(a) In most practical applications E~ > E~ while ap < of; under 

such conditions 6 is positive for t= 0, becomes zero at 

25 

- -  
0 -E  

to = Tpgn and is negative for larger values of t, implying 
P a 

"'negative" dielectrophoresis or in other words no trapping. 

(b) For metallic particles 'I -+ 0, thus B,, = 1; in this case 

$,, is seen to be independent of the liquid permittivity and 

conductivity, and always positive. 

(c) For perfectly insulating particles U <<af and t >> T we 

this case can be seen as the opposite of the have 

preceding, now Bd, is again independent of the liquid properties 

and always negative. 

P 

P P 1 BdC + - - 2 ;  
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MULTIGRADIENT DIELECTROPHORESIS 19 

In a.c. fields the critical time to has its equivalent in 

the form of a critical frequency 
= [ - ': 1'. Here as w 

@O 'I (E -E ) 
P P  

increases for the case E > E~ and u of, B passes from a negative 
P P 

value through zero at w to a positive one for w > w . This 

means that the conductive regime is ruling at low frequencies and 

the dielectric one is obtainable by increasing the frequency beyond 

0 .  
0 

2 )  Differences between Bead and Rod Matrices 

In a bead matrix with y > 0, there is attraction at the contact 

points between the beads for 6 > 026; in a widely-spaced rod matrix 
there ax-: regions of attraction and repulsion aroung the rod as 

seen in Fig. 5. Thus at least in theory simultaneous positive and 

Y 

2 

1 

0 

y 1  
0 . 5  
0 

COLLECTOR 

I c 

E + 

1 2 

- repulsion 

+ attraction 

X 

Figure 5 - Mapping of attraction and repulsion 
zones in first quadrant for dif- 
ferent values of under static 
conditions and > 032. 
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20 SHALOM AND L I N  

negative d ie lec t rophores i s  i s  f eas ib l e  i n  a rod matrix bu t  not i n  a 

bead matrix. In f a c t ,  negative d ie lec t rophores i s  i s  very hard t o  

obtain s ince  the  force i s  weak. The e f f ic iency  of a bead matrix 
can be g rea t ly  improved by replacing p a r t  of t h e  g l a s s  beads by 

meta l l ic  o r  f e r r o e l e c t r i c  ones, the  cause of t h e  improvement being 

not a s i zab le  change of y bu t  a jump i n  a conductive l i qu id  from 

a negative value of y t o  a pos i t i ve  one ( t h e  me ta l l i c  beads a re  

e f f i c i e n t  i n  the  conductive regime; t h e  f e r r o e l e c t r i c  one i n  t h e  

d i e l e c t r i c  regime). Moreover, a matrix of me ta l l i c  rods can be so  

designed as t o  a c t  a s  e lec t rodes  of a l t e r n a t e  po la r i ty ;  with the  

spacing D kept s u f f i c i e n t l y  small (D/2a < 51,  the  whole energized 

space displays a highly non-uniform f i e l d ,  y ie ld ing  good separa t ion  
27 cha rac t e r i s t i c s  a t  lower voltages . 

V I .  EQUATIONS OF MOTION FOR ROD MATRIX 

Here only the  case of a s ing le  rod w i l l  be examined. General- 

i z ing  Newton's second l a w  of motion, we have: 

where ( m  t h y )  i s  the  v i r t u a l  mass of the  p a r t i c l e ,  m being i t s  

ac tua l  mass and mf t h e  f l u i d  mass displaced by it; k is a 

coe f f i c i en t  depending on i t s  geometry and on the  na ture  of i t s  

motion ( a  conservative estimate f o r  k i s  0 .5  f o r  a spher ica l  

p a r t i c l e ) .  v i s  the p a r t i c l e  ve loc i ty .  FG, the  qrav i ty  fo rce ,  

P P 

2 8  

+ 
P 

is given by: 

4 $ = _ _  3 
G 3 nb 9 ( P p - P f )  

where Tr and are  un 

(64)  

t vec tors  i n  the  r a d i a l  and azimuthal 

and 
pP 

d i r ec t ions  respec t ive ly ,  g is  the  grav i ty  acce lera t ion ;  

pf the  p a r t i c l e  and f l u i d  dens i t i e s .  FD is  the  drag force.  

A Stokesian drag law i s  applicable f o r  p a r t i c l e  Reynolds numbers 

much smaller than 1, i .e .  Re 

ve loc i ty  i n  the  sepa ra to r ) .  Thus we have: 

+ 

= 2Vobpf/q < <1 (Vo i s  the  s u p e r f i c i a l  
P 
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2 1  MULTIGRADIENT DIELECTROPHORESIS 

where rl is the fluid viscosity. The flow regime around the rod is 

governed by the rod Reynolds number Re = 2Voapf/v. Two cases 

have to be distinguished as reported by Gerber and Birss 29 : 

a) Re >> 1 potential flow 

b) Rer << 1 creeping flow 

These two cases fall under laminar flow. In the first case, the 

flow potential is given as (referring to Fig. 4): 

2 
0 = Vo(r + 5 )cos(e-a) (66) 

then 
2 2 + + +  

vf =-V$ = -Vo[ (1 -% )cos(f3-a)h - (1 + % )sin(e-a)i 1 

The creeping flow equations were derived by Zebe13' from the 

theoretical work of Lamb31: 

( 6 7 )  e r r 

2 CL = 1/Rn (7.4/Rer) 

The equations of motion for a particle in potential flow are given 

below, similar ones can be written for creeping flow. For a more 

convenient treatment we introduce the dimensionless variables : 
32 

t = Vot/a , r = r/a a 

and the dimensionless groups: 

2 2 
B = 6E E E yB/Vo(p fp / 2 )  dielectrophoretic/inertial (69a) o o f  P f  

G = (p  -p  )ag/Vt(p +p / z )  gravitational/inertial (69b) P f  P f  

S = 2V0(p +pf/2)bL/9qa inertial/viscous (69~) P 
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22 SHALOM AND L I N  

where G and S represent  r e spec t ive ly  v a r i a n t s  of t h e  Froude and 

Stokes numbers. 
The value of E i s  func t ion  of t h e  f i e l d  type. For d . c . ,  

0 

Eo = cons t . ;  

uished: 

f o r  s inuso ida l  a .c .  f i e l d s  two cases  must be d i s t ing -  

1) Low f requencies ,  f o r  which Eo = Emcos(wt+$), where 

phase assoc ia ted  with t h e  instantaneous value of Eo a t  t h e  moment 

of en t ry  of t he  p a r t i c l e  i n t o  t h e  separa t ion  c e l l  ( t = O ) ,  so 

$ = cos [Eo(t=O)/Em]. Obviously, when dea l ing  wi th  a suspension, 

$ t akes  on a d i f f e r e n t  value f o r  each p a r t i c l e ;  thus  a t  low 

frequencies t h e  t r a j e c t o r y  of a p a r t i c l e  does not  depend only on w 

bu t  a l s o  on $33r34 .  

2 )  High f requencies ,  f o r  which 

ic le  " f e e l s "  an average force  wi th  only  t h e  rms value of t he  f i e l d  

to  be taken i n t o  account. 

$ i s  t h e  

-1 

Eo = E m / f i ;  i n  t h i s  case  t h e  p a r t -  

For pulsed f i e l d s  t h e  s i t u a t i o n  i s  very s i m i l a r  t o  s inuso ida l  

f i e l d s ;  t h e  same two cases  must be d is t inguished ,  b u t  here  

Eo = Em 

Eo is found from the  app l i cab le  r m s  value. 

co 

z a cos(nwt+$) a t  l o w  frequencies while a t  high f requencies  
n n=O 

Thus i n  t h e  genera l  case ,  t h e  following s e t  of second-order 

d i f f e r e n t i a l  equat ions  is obtained: 

2 'do 
dLra  

d t a  a a  

- Gsine - - [(1 - 3 
a 

- -  r, iq) = - + r+ + cos2(e+6)1 
r r  

1 1 dra 

S r dta 
) cos(8-a) + - I 

d 2 0 + 2 (-) dra ("-> = - 5 s in2(e+6)  

dta a 
ra 2 d ta  d t a  

I (70b) 
d8 

l2 ) s in (0 -a )  - ra 
r 

1 - Gcos8 + - [ ( l  + - S 
a 

More d e t a i l s  a r e  provided i n  Ref.31. For s m a l l  Stokes and Froude 

numbers t h e  i n e r t i a l  and g rav i ty  terms may be  neglected and E q .  (70) 
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MULTIGRADIENT DIELECTROPHORESIS 23 

s i m p l i f i e s  t o  a set  of  f i r s t - o r d e r  d i f f e r e n t i a l  e q u a t i o n s :  

where 4b2E:~O~ ,yB 
BS = dielectrophorrtic/viscous ( 7 1 ~ )  

3wVO 

29,30. Equat ions  (71) have no a n a l y t i c a l  s o l u t i o n  e x c e p t  f o r  Y = 0 

t h i s  s o l u t i o n  h a s  been s t u d i e d  i n  d e t a i l  f o r  v i scous  flow by Shalom 

and Lin35. 

examples o f  t r a j e c t o r i e s  i n  d . c .  f i e l d s  w e r e  given f o r  p o t e n t i a l  

flow32 and v i s c o u s  flow35 i n  r e c e n t  p u b l i c a t i o n s .  Low-frequency 

The g e n e r a l  case r e q u i r e s  numerical  a n a l y s i s ,  and 

e f f e c t s  on t h e  t ra jector ies  have been also i n v e s t i g a t e d  f o r  s inu-  

s o i d a l  f i e l d s  33,34 

Determinat ion of  t h e  t r a j e c t o r i e s  is u s e f u l  i n  i n v e s t i g a t i n g  

the mechanism o f  p a r t i c l e  t r a p p i n g  b u t  i s  also h e l p f u l  i n  f i n d i n g  

the f i l t e r  e f f i c i e n c y  and w e  s h a l l  see how. I n  t r a c i n g  t h e  par t ic le  

t ra jector ies  f o r  p a r t i c l e s  a t  v a r i o u s  p o s i t i o n s ,  a c r i t i c a l  t ra ject-  

o r y  can b e  i d e n t i f i e d  ( F i g .  6 )  corresponding t o  a c a p t u r e  r a d i u s ,  

t y  
COLLECTOR 

R c - I  t 1 

"0 
__* 

F i g u r e  6 - Schematic e x p l a n a t i o n  o f  c r i t i ca l  
t r a j e c t o r y 3 2 .  
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SHALOM AND L I N  24 

Rc,  e q u a l  t o  t h e  coord ina te  

u r e .  Then Rc can be p l o t t e d  a g a i n s t  t h e  d imens ionless  group BS 

(see E q . ( 7 1 c ) )  which is m o s t  c h a r a c t e r i s t i c  o f  t h e  s e p a r a t i o n  

p r o c e s s  32'35. 

as 2~ a ( F i g .  7 )  which i s  i n  fact  a measure O f  t h e  probability Of 

c a p t u r e  i n  a s i n g l e  r o d - p a r t i c l e  i n t e r a c t i o n .  
can then be e a s i l y  i n c o r p o r a t e d  i n  a s imple s t a t i s t i ca l  express ion  

for t h e  e x t r a c t i o n  e f f i c i e n c y  o f  t h e  par t ic les ,  E f ,  per f i l t e r  

l e n g t h  and t h e  volume packing of t h e  r o d s  1 - E. 

t h i s  e f f i c i e n c y  as: 

of t h e  p a r t i c l e  a t  t h e  p o i n t  o f  d e p a r t -  

Then a c a p t u r e  area p e r  u n i t  l e n g t h  can be  d e f i n e d  

C 
This  P r o b a b i l i t y  

zebe13' o b t a i n e d  

where m i s  t h e  number o f  l a y e r s  of rods .  I n  terms of  t h e  volume 

packing o f  t h e  r o d s ,  E q .  (72) becomes: 

E f = l -  [ 1 - 2 R  c (+ym ( 7 3 )  

I a 

Figure  7 - Capture area per u n i t  l e n g t h  of rod ~- 
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MULTIGRADIENT DIELECTROPHORESIS 25 

Other expressions are found in literature 19f37f38 

ial term, for instance : 

with an exponent- 
38 

Ef = 1 - exp [-4(1-E)RcL/3sa] (74) 

where L is filter length. 

Anyhow, it should be borne in mind that Eqs. (73) , (74) are 
approximately correct only for a separation matrix in its early 

stages of separation. The build-up of particles on the rod surface 

distorts both the electric and the flow fields in its vicinity gradual- 

ly decreasing the capture radius down to zero for which saturation 

is obtained. A more sophisticated model dealing with this equilibrium 

situation is necessary to take loading factors into consideration 

and this is the object of future work. 

VII. CONCLUSION 

Various theoretical aspects of matrix dielectrophoresis have 

been reviewed in an attempt at describing the complex situation 

created by the large number of parameters: physical, operating and 

geometric. Perhaps more questions have been raised than answers 

provided throughout this work clearly indicating that multigradient 

dielectrophoresis is still in its infancy. 

Specialists familiar with high gradient magnetic separation 

can easily note the close similarity existing between the magnetic 

and dielectric traction forces (for the dielectric regime) with H 

replaced by E and by E .  Obviously, what makes dielectric 

separation much more intricate is the existence of conductivity 

parameters, transient effects and the fact that it is possible to 

use a.c. and pulsed electric fields. As for the influence of para- 

meters common to both processes (e.g. Vo, q, a, b, y, B )  it may be 

safely stated that the same effects are to be expected in both areas 

thus the experience gathered in magnetic separation can be applied 

in the dielectric area. 
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APPENDIX A: DETERMINATION OF POLARIZABILITY FOR A SUDDENLY APPLIED 
SINUSOIDAL FIELD (TRANSIENT EFFECT) 

Def in ing  Eo = E coswt and u s i n g  E q .  (19), w e  have: 
m 
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- dA + 2 = b3E (% coswt - W E  s i n w t  
d t  T m . r  P P P 

SHALOM AND L I N  

( A l l  

Solving t h i s  d i f f e r e n t i a l  equation, we obta in :  

and 
2 2- (0  +T w E ) C O S w t + T  wsinwt ( 0  -E ) -t/'Ip 

P P  P P + c e  
2 2  

A = b E  m 
l + T U  

(A3) 

A s  f o r  t h e  d .c .  case w e  have: 

3 A(0) = b E 
m P  

Thus : 

- t / T p  
) (A4)  

A=----- b3Em 2 2- * l + T  0 P P  P P  P 
[ ( O p  + T w E ) coswt + ( 0  -: ) ('I w s i n w t -  e 

For t >> 'I Eq. (A41 i s  seen to  be i d e n t i c a l  t o  Eq .  ( 3 7 ) .  An equival-  

e n t  expression was obtained e a r l i e r  by Benguigui and L i n 1 6 :  
P 

coswt 
E a -E u wsinwt + + - 7 

f p  p f .  D ] (AS) 
2 1 + T2W 2 (a  +2u ) 

P f  P 

APPENDIX B: DETERMINATION OF POLARIZABILITY FOR PULSED FIELD 
INCLUDING TRANSIENT EFFECT 

This  type of f i e l d  is espec ia l ly  d i f f i c u l t  t o  dea l  wi th  in 

view of t h e  need f o r  a s u i t a b l e  func t ion  descr ib ing  its time p a t t e r n .  

AS an example, l e t  us  examine t h e  s t e p  func t ion  shown i n  Fig.  8. 

This  simple case  i s  r e a d i l y  t r e a t e d  wi th  t h e  a i d  of a Four ie r  
series (35, p.142) : 

where k = 211-1. 
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Using E q .  (19), w e  obta in  

- 
m n + l  2; w m dA A 3  - dt + T =b E (-1) coskwt] + 2 (-1)"sinkwt 

' n = l  k 
P 

( B 2 )  
':hen, as i n  Appendix A :  

2; w m - t / T p  

n= 1 

Whence 
- 

m coskwt+kr wsinkwt 
+ P n + l  

2 2 2  
P 

A = b E  
k ( l + k  T w ) 

m sinkwt-kr wcoskot -t/-rp 
2 p 2  2 + T W; c 

p p *=I l + k r w  
P 

Figure 8 - Example o f  pulsed f i e l d  
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30 SHALOM AND L I N  

or  
2 2 2 -  - m 

( - l J n ( E  -a ) k r  wsinkwt+(-l)n+lcoskwt(E k T w +u ) 
P P  P P P  

A=b3Em{%+; n=l k ( l + k r w )  2 2 2  
P 

- t / T p  

+ c e  ( B 5 )  

Using t h e  same i n i t i a l  c o n d i t i o n  as f o r  t h e  o t h e r  cases, w e  have: 

A s  i n  t h e  s i n u s o i d a l  case, a much simpler e x p r e s s i o n  i s  obta ined  

f o r  t h e  conduct ive  and d i e l e c t r i c  regimes 

1) T w << 1 (conduct ive  reg ime) :  
P 

m 
n + l  coskwt 

k 

Comparing w i t h  Eq.  (BL), w e  see t h a t :  

3 
A = b E o  

O P  

2 )  T w >> 1 ( d i e l e c t r i c  regime):  
P 

o r  

m 

3 [$ + 5 ( - l )n+l  coskwt 
A = b E  m ' n=l  -1 k 

P: 
€or t > > T  

3 A = b E F  + -  
O P  2 P P 

Whence 

( B 1 1 )  3 -  
A = b E E + c o n s t .  

O P  

E q . ( B 7 )  i s  analogous to  i t s  c o u n t e r p a r t  of  a s i n u s o i d a l  f i e l d ,  b u t  

E q .  (B11) d i f f e r s  by the a d d i t i v e  c o n s t a n t .  
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